Ali Fawaz
Senior Application Engineer

POWER FACTOR CORRECTION
Infineon's Rankings

<table>
<thead>
<tr>
<th>Market Category</th>
<th>Rank</th>
<th>Market Share</th>
<th>Research Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>#1</td>
<td>10%</td>
<td>IMS Research, July 2009</td>
</tr>
<tr>
<td>Industrial</td>
<td>#1</td>
<td>8%</td>
<td>Semicast, May 2008</td>
</tr>
<tr>
<td>Chip Card</td>
<td>#1</td>
<td>26%</td>
<td>Frost & Sullivan, October 2009</td>
</tr>
<tr>
<td>Automotive</td>
<td>#1</td>
<td>9%</td>
<td>Strategy Analytics, July 2009</td>
</tr>
</tbody>
</table>
Agenda Overview

- Power Factor basics
- Definition of Power factor
- PF for various loads
- Total Harmonic Distortion
- PF correction methods
- ICL8001G: High PFC Dimmable LED Driver
Power Factor basics
Definition of Power factor
PF for various loads
Total Harmonic Distortion
PF correction methods
ICL8001G: High PFC Dimmable LED Driver
What is Power Factor? Why is it important for lighting?

Power Factor is a measure of how effectively the load takes power from the line (power plant)

- Alternate definition: PF provides a measure of how close your load is to a incandescent light bulb (which has a PF of 1)

- **Systems with Low PF require additional power to be generated by utilities**

- **Lighting consumes \(\sim 20\% \) of all generated power.**

- **Much of this power is consumed by traditional bulbs with PF of 1**

- **Transition to low PF LED bulbs negates some of these savings.**

→ **High power factor solutions are required for LED bulbs and fixtures**
Power Factor Requirements -- Regulatory

- DOE energy star requires PF >0.7 for energy star rating of LED light sources
- Europe EN61000-3-2 requires power factor to meet harmonic requirements for light sources above 25W

These standards provide a baseline requirements!

→ Market requirements for LED bulbs and fixtures are driving PF >0.9 for powers as low as 5W.
Detailed of Low Power factor effects

- A Power Factor less than 1 could result in the problems below

 - Power is recycled from the LED Bulb/ Fixture to the power source?
 - Harmonics from LED bulb/ fixture are degrading the line and affecting the performance of other equipment on the line
 - The load is generating additional losses
 - The load is requiring that the power grid provide more power than used.
Agenda Overview

- Power Factor basics
- Definition of Power factor
- PF for various loads
- Total Harmonic Distortion
- PF correction methods
- ICL8001G: High PFC Dimmable LED Driver
Definition of Power Factor

- Power Factor is defined as

\[P \cdot F = \frac{\text{AVERAGE POWER}}{\text{APPARENT POWER}} \]

- Derivation of Average Power

\[P_{\text{avg}} = \frac{1}{T} \int_{0}^{T} p(t) \, dt = \frac{1}{T} \int_{0}^{T} v(t) \cdot i(t) \, dt \]

A periodic voltage \(v(t) \) can be expressed in Fourier Series as:

\[v(t) = V_{dc} + \sum_{k=1}^{\infty} \left(V_k \cdot \sin \left(wt + \theta_k \right) \right) \]
Average Power

For Pure AC voltages $V_{dc}=0$

$$v(t) = \sum_{k=1}^{\infty} \left(V_k \cdot \sin(kwt + \theta_k) \right) = V_1 \cdot \sin(wt + \theta_1) + V_2 \cdot \sin(2wt + \theta_2) + V_3 \cdot \sin(3wt + \theta_3) + \ldots$$

Similarly a current $i(t)$ that is periodic can be represented as:

$$\sum_{r=1}^{\infty} \left(I_r \cdot \sin(rwt + \phi_r) \right) = I_1 \cdot \sin(wt + \phi_1) + I_2 \cdot \sin(2wt + \phi_2) + I_3 \cdot \sin(3wt + \phi_3) + \ldots$$

$$P_{avg} = \frac{1}{T} \int_{0}^{T} p(t) \, dt = \frac{1}{T} \int_{0}^{T} v(t) \cdot i(t) \, dt$$

Average Power

\[
P_{\text{avg}} = \frac{1}{T} \int_{0}^{T} V_{1} \cdot \sin(wt + \theta_{1}) \cdot (I_{1} \cdot \sin(wt + \phi_{1})) + V_{2} \cdot \sin(2wt + \theta_{2}) \cdot (I_{2} \cdot \sin(2wt + \phi_{2})) + V_{3} \cdot \sin(3wt + \theta_{3}) \cdot (I_{3} \cdot \sin(3wt + \phi_{3})) + \ldots \]

\[
+ \frac{1}{T} \int_{0}^{T} V_{1} \cdot \sin(wt + \theta_{1}) \cdot I_{2} \cdot \sin(2wt + \phi_{2}) + V_{1} \cdot \sin(wt + \theta_{1}) \cdot I_{3} \cdot \sin(3wt + \phi_{3}) + V_{1} \cdot \sin(wt + \theta_{1}) \cdot I_{4} \cdot \sin(4wt + \phi_{4}) + \ldots \]

Unlike Terms (different frequencies) \(r \neq k \); deliver zero Average Power. Therefore,

\[
P_{\text{avg}} = \frac{1}{T} \int_{0}^{T} \sum_{k = 1}^{\infty} \left(V_{k} \cdot I_{k} \cdot \sin(kwt + \theta_{k}) \cdot \sin(kwt + \phi_{k}) \right) \, dt
\]
Average Power

\[P_{\text{avg}} = \sum_{k = 1}^{\infty} \left(\frac{V_k \cdot I_k}{2} \cdot \cos(\theta_k - \phi_k) \right) \]

In terms of Peak Voltage and Peak Current

\[P_{\text{avg}} = \sum_{k = 1}^{\infty} (V_{\text{rms}}_k \cdot I_{\text{rms}}_k \cdot \cos(\theta_k - \phi_k)) \]

In terms of RMS voltage and RMS current

P.F Formulas

\[P \cdot F = \frac{\sum_{k = 1}^{\infty} (V_{\text{rms}}_k \cdot I_{\text{rms}}_k \cdot \cos(\theta_k - \phi_k))}{V_{\text{rms}} \cdot I_{\text{rms}}} \]

P.F Mother Equation
Power Factor Formulas

- Assuming $V(t)$ is an ideal sinusoidal voltage Source:

$$P\cdot F = \frac{V_{\text{rms}1} \cdot I_{\text{rms}1}}{V_{\text{rms}} \cdot I_{\text{rms}}} \cdot \cos(\theta_1 - \phi_1)$$

$$P\cdot F = \frac{I_{\text{rms}1}}{I_{\text{rms}}} \cdot \cos(\theta_1 - \phi_1) = K_{\text{disp}} \cdot K_{\text{dist}}$$

$$K_{\text{dist}} = \frac{I_{\text{rms}1}}{I_{\text{rms}}}$$
Distortion Factor

$$K_{\text{disp}} = \cos(\theta_1 - \phi_1)$$
Displacement Factor

$$\theta_1 - \phi_1$$
Displacement angle between $V(t)$ and $i(t)$ at Fundamental frequency.
Agenda Overview

- Power Factor basics
- Definition of Power factor
- PF for various loads
- Total Harmonic Distortion
- PF correction methods
- ICL8001G: High PFC Dimmable LED Driver
AC Power at PF = 1 Resistive Load (Incandescent Light Bulb)

There is no phase shift between Voltage and Current. All power taken from the source is used by load.
Sinusoidal v(t) & Sinusoidal i(t) with PF < 1

Reactive power
Oscillates between Source and reactive part of load (cap or inductor)
Current Phase Shift Cap (0<\(\Phi\) <90)
Ind (-90<\(\Phi\)<0)

Red- Reactive Power

\[P \cdot F = \frac{I_{rms1}}{I_{rms}} \cdot \cos(\theta_1 - \phi_1) = K_{disp} \cdot K_{dist} \]

\[K_{dist} = \frac{I_{rms1}}{I_{rms}} = 1 \]

\[P \cdot F = K_{disp} \]

Plot1
1 v(1)
2 i(l1)
3 product

102m 106m 110m 114m 118m
time in seconds

-800 -400 0 400 800
product in watts

-200 -100 0 100 200
v(1) in volts

-8.00 -4.00 0 4.00 8.00
i(l1) in amperes
The input current in a system with diode rectifier followed by a capacitor is nonsinusoidal: This is observed in Lighting Solutions.

- a large harmonic component in the distorted input current leads to an increasing pollution of the mains voltages.
- the amount of reactive power is dramatically increased
(a 100W TV set consumes 90W reactive power => The input power is only partly transferred to the output)
Harmonic Content

Input Voltage and Current

- **1** input_voltage
- **2** input_current
- **3** harmonic_content

Input Voltage and Current in volts

<table>
<thead>
<tr>
<th>Time in seconds</th>
<th>Input Voltage in volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>110m</td>
<td>-20.0</td>
</tr>
<tr>
<td>130m</td>
<td>-10.0</td>
</tr>
<tr>
<td>150m</td>
<td>0</td>
</tr>
<tr>
<td>170m</td>
<td>10.0</td>
</tr>
<tr>
<td>190m</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Input Current in amperes

<table>
<thead>
<tr>
<th>Time in seconds</th>
<th>Input Current in amperes</th>
</tr>
</thead>
<tbody>
<tr>
<td>110m</td>
<td>-200</td>
</tr>
<tr>
<td>130m</td>
<td>-100</td>
</tr>
<tr>
<td>150m</td>
<td>0</td>
</tr>
<tr>
<td>170m</td>
<td>100</td>
</tr>
<tr>
<td>190m</td>
<td>200</td>
</tr>
</tbody>
</table>

Current Harmonics

- Frequency in hertz:
 - 60.0
 - 180
 - 300
 - 420
 - 540

- Current Harmonics (amperes):
 - 500m
 - 1.50
 - 3.50
 - 4.50
1st Harmonic Power

1rd Harmonic Power
Is actual Power Transfer between Source and Load

Total energy transfer is positive all the time.
3rd Harmonic Power

3rd Harmonic Power Oscillates between Source and Load Apparent power only!!!

Total energy transfer after each half period is equal zero “0”
Power Factor Formula for Non-Linear Loads:

- **Power Factor Formula:**
 \[
 P \cdot F = \frac{I_{rms_1}}{I_{rms}} \cdot \cos (\theta_1 - \phi_1) = K_{disp} \cdot K_{dist}
 \]

- **V(t) and i(t) fundamental components are in phase:**
 \[
 \cos (\theta_1 - \phi_1) = K_{disp} = 1
 \]

- **P.F:**
 \[
 K_{dist} = \frac{I_{rms_1}}{I_{rms}} < 1
 \]
AC-DC conversion with and without PFC

Without Power Factor Correction

- **Power factor:** 0.43

With Power Factor Correction

- **Power factor:** >0.90!
Agenda Overview

- Power Factor basics
- Definition of Power factor
- PF for various loads
- Total Harmonic Distortion
- PF correction methods
- ICL8001G: High PFC Dimmable LED Driver
A frequently-used measure of harmonic levels is total harmonic distortion (or distortion factor), which is the ratio of the rms value of the harmonics (above fundamental) to the rms value of the fundamental, times 100%, or:

$$\text{THD}_I = \frac{I_{\text{rms}}(\text{Distorted})}{I_{\text{rms}1}} \times 100$$

$I_{\text{rms}}(\text{Distorted})$ is the sum of all the harmonics other than the fundamental.

$$I_{\text{rms}}(\text{Distorted}) = \sqrt{I_{\text{rms}}^2 - I_{\text{rms}1}^2}$$

$$\text{THD}_I = \sqrt{\left(\frac{I_{\text{rms}}}{I_{\text{rms}1}}\right)^2 - 1} \times 100$$

$$\text{PF} = \frac{1}{\sqrt{1 + \frac{\text{THD}_I}{100}}}$$
Incorporating these two assumptions
\((P_{avg} \approx P_{1avg} \text{ and } V_{rms} \approx V_{1rms})\)
the following approximate form for Power Factor:

![Graph showing Total Harmonic Distortion](image)
Agenda Overview

- Power Factor basics
- Definition of Power factor
- PF for various loads
- Total Harmonic Distortion
- PF correction methods
- ICL8001G: High PFC Dimmable LED Driver
Methods of Power Factor Correction

Passive Solution
by iron core choke
Characteristics:
Pros: rugged, supports EMI, cheap
Contras: heavy, big, tends to humming
output voltage dependent on load

Active Solution
by ferrite/powder core choke, diode,
MOSFET, control IC
Characteristics:
Pros: light, effective, output voltage stable
allows wide input voltage range
Contras: additional components but costs partially
compensated in remaining system
Active Power Factor Correction Concept

- Emulate Load after bridge rectifier as a lossless resistor.

Output ripple is twice the line frequency.

Conversion ratio = \(\frac{V_{dc}}{V_{in} \cdot |\sin wt|} \)

Control is needed for \(R_{in} = V_{in}^2 / P_{in} \) to provide required output power.
Active Power Factor Correction Concept

- Slow control loop. Cross-over frequency should be about 20Hz at high line input voltage.

- Input Voltage Feed-forward is required to provide constant output Regulation. The input voltage feed-forward must be constant during each half cycle.
Active Power Factor: Two Stage Method

- **Two Stage Method**
 - Tight Output Voltage Regulation at load is provided by second stage.
 - Boost most commonly used. CRM for Po<250watts; CCM Average current mode control for Po>250watts
Active Power Factor Correction: Single Stage Method

- Single Stage Method

- Output Voltage Regulation at load is not tight.
- High output ripple (second harmonic) at load. Used in applications such as LED lighting in which high output ripple voltage is inconsequential.
- CRM Flyback (Buck-Boost) most commonly used.
- Coupled inductor provides galvanic Isolation for safety is provided.
Control Methods for Boost-Converter

Critical Conduction Mode CRM Variable frequency fixed Ton.

Characteristics:
Pro
- no reverse recovery losses of diode
- simple control method
Contra
- difficult smoothing of peak currents at light load

Continuous Current Mode CCM usually constant frequency

Characteristics:
Pro
- easy smoothing of peak currents
- stable operation at light load
Contra
- reverse recovery losses of diode
- complex control method
Active Power Factor Correction: PFC Flyback Converter features

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Is inherently a Power Factor Corrector when operated in DCM. Simple hysteretic fixed ton control.</td>
<td>- High Voltage Stress on MOSFET and diode.</td>
</tr>
<tr>
<td>- Coupled Inductor provides galvanic isolation for safety.</td>
<td>- Filtering for EMI due to switching input current. However, this problem is reduced by QR operation.</td>
</tr>
<tr>
<td>- Inherent Current limiting.</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of PFC Flyback Converter](image-url)
Flyback with QR operation

- Flyback can be implemented with FF or QR. QR offers the following advantages:
 - High efficiency due to zero voltage switching.
 - Reduced EMI noise.
Agenda Overview

- Power Factor basics
- Definition of Power factor
- PF for various loads
- Total Harmonic Distortion
- PF correction methods
- ICL8001G: High PFC Dimmable LED Driver
LEDs AND POWER FACTOR CORRECTION.

Requirements for LED solutions:

- Appears to the source as a resistive load
- Meets regulatory, market and safety requirements
- Control to provide required output power.
- LOW COST (Let us not Forget):
 - Solution: Single Stage Flyback.
 - Very few components --primary side control results in as few as 20 components.
 - Has inherent current limiting. No added circuitry for protection.
 - Simple low cost hysteretic control can be used.
 - Inherent very high PF.
 - Full galvanic isolation
ICL8001G: Single Stage LED Driver

ICL 8001G Performance
- vs standard PFC controller -

- Precise PWM generation
- Propagation delay correction
- Fold back correction
- Start Up Cell
- Programmable Protection
ICL8001G: Single Stage LED Driver

Supports worldwide line voltages with power output up to 30W

LED Bulb QR Flyback Driver with ICL8001G for

Phase Cut Dimming & PFC using Primary Control

Vin - L1 - R5 - C1 - L2 - BR1

R19 - C11 - R17 - D7 - R3 - C18 - C15 - N2

D6 - R2 - N1 - T1 - N3 - D21 - C25 - VLED

ICL8001G - Continuous Mode EIM Control PFC

PWM-Control Protection Gate Driver

Start-Up Cell

Q1 - R4 - NC - GND - C3

IFAG IMM API SPI AC
Dr. Werner Ludorf
PFC performance
Phase Cut Dimming – Leading Edge

- PFC function as ideal precondition for stable leading edge dimmer operation
- Oscillations caused by interaction of EMI filter with leading edge dimmer are depending on EMI filter design applied

Reference Dimmer: Ehmann Lumeo Domus 1060 60-300W
Phase Cut Dimming – Trailing Edge

Maximum Dimming-Level

Medium Dimming-Level

Minimum Dimming-Level

Reference Dimmer: Ehmann Lumeo Domus 4660 20-315W
LED Bulb Driver with ICL8001G
Feature Summary

- Best in class BOM cost with 30% material cost reduction
- Isolated Driver output for efficient thermal management
- High quasiresonant (QR) flyback driver efficiency up to 90%
- High power factor PF > 98% adjustable
- Phase cut controlled continuous LED current dimming
- Primary side output power control
- Small formfactor fits E27 bulb
- Cycle by cycle current limitation
- Output short circuit and output over voltage protection
- Over temperature detection
Additional PFC corrected LED solutions from Infineon.
Single Stage PFC with Fly-back combined with linear drivers on secondary side

Optimized System Solution:
Combination of single-stage PFC + Flyback AC/DC converter, constant current control and linear drivers allows
- high power factor,
- high efficiency and
- no EMI on secondary side
Off-Line LED Driver Solution
40W Single Stage Evaluation Board

- TDA4863 Flyback controller & PFC in a single stage topology
- TLE4305 CV CC Feedback
- Optimised for low cost multi LED string system with BCR450 linear current regulators
- Scalable and low cost BOM

- 40W Output: Input 190-270V AC
- 20W Output: Universal Input
- Variable, Stable Output (15V-25V)
- High Efficiency ~88% (AC to LED)
- High Power Factor >0.9
- Order Code EVAL-LED-TDA4863G-40W
High Power Lighting Power Supply Architecture
PFC+LLC [+DC-DC]

EMI Filter / Rectifier
PFC Converter
LLC Converter
DC-DC Converter

DCM PFC
TDA 4863-2
ICE2PDS01

CCM PFC
ICE2PCS0x
ICE3PCS0x

LLC
ICE1HS01G
ICE2HS01G

For internal use only
Copyright © Infineon Technologies 2009. All rights reserved.